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Abstract —Numencaf methods are applied in the anafysis of coaxiaf

structures used as sensors for in uioo permittivity studies of biological
substances. The methods used for the solntion of the resufthrg static
conductor-dieketric problems are the Finite Element Method (FEM) and

the Method of Moments (MOM) applied to a pair of coupled integral
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equations. A linear model which relates the sample permitdvity to the
fringing field capacitance of the sensor is disenssed and vefues of the model

parameters are calculated for different types of sensors.

I. INTRODUCTION

o PEN-ENDED coaxial lines have been used exten-

sively as sensors for permittivity measurements of

biological substances in recent years [1]. Their simple

geometry and small size (potentially as small as 0.5-mm

diameter) makes them suitable for in oko measurements as
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Fig. 1. Open-ended coaxial sensor for dielectric measurement.

well as measurement of the spatial distribution of permit-

tivity. Other advantages of the open-ended coaxial line

over other sensor configurations are: a broad frequency

range; compatibility with time-domain, applicability to

frequency-domain, and resonant measurement techniques;

and ease of fabrication.

When used as a sensor for dielectric measurement, the

open end of the line is inserted into the sample (as in Fig.

1), and the input reflection coefficient (or input admit-

tance) is measured at a specific frequency and temperature.

Various methods have been used to relate the reflection

coefficient data to the dielectric properties of the sample.

These range from analytical/graphical methods [2], to

equivalent circuit approaches and interpolation methods

[3].

A solution, of the scattering from the open end of a

coaxial line in contact with a lossy dielectric was presented

by Mosig et al. [2]. Nomograms of reflection coefficient

versus relative permittivity of the half-space medium were

constructed, from which 6‘ and c“ could be calculated for a

given reflection coefficient. A major limitation of this

approach is that extensive nomograms are required at each

measurement frequency. Also, the numerical computations

required to generate the nomograms become increasingly

time consuming for high permittivities such as those en-

countered in biological substances at low frequencies [2].

Several authors have made use of a lumped equivalent

circuit, relating the admittance of the sensor to the permit-

tivity. This approach has the advantage that closed-form

expressions for c’ and ~“ as a function of the reflection

coefficient can be derived and used in automatic network

analyzer routines. Burdette et al. [3] used an equivalent

circuit consisting of a single lumped-shunt-capacitance

whose effective value was equal to the fringing capacitance

of the open-ended line in air multiplied by the sample

permittivity. An additional shunt capacitance whose value

is independent of the sample permittivity was added in [4]

to account for fringing inside the coaxial line. Also, the

effect of radiation from the open end on the equivalent

circuit was treated by Stuchly et al. [5] and used in mea-

surements by Brady et al. [6]. In all of the references

pertaining to the lumped circuit approach, the equivalent

circuit parameters of the sensors were either measured

directly or inferred from measurements on known dielec-

trics. Also, the assumption was made that the fringing

capacitances are linearly proportional to the permittivit y

and independent of frequency.

The purpose of this work is to use numerical methods to

investigate the behavior of the fringing capacitance of

coaxial sensors, shown in Fig. 1, as a function of the

sample permittivity. In particular, the two-capacitance or

linear model, relating the net fringing capacitance to the

permittivity, is examined.

Since it is known [7]–[9] that the fringing capacitance for

the homogeneous case is constant from dc to microwave

frequencies (for all practical sizes of line), only the static

fringing capacitances are calculated in the present work.

The two numerical methods selected to solve the resulting

static conductor–dielectric problems are the Finite Ele-

ment Method (FEM) and the Method of Moments (MOM)

applied to a pair of coupled integral equations. Since all

solutions are for the static case, only lossless dielectric are

modelled.

II. THEORY

A. Capacitance Model

For the purposes of presentation of the numerical re-

sults, a linear model relating the net fringing capacitance to

the permittivity c is assumed. The fringing capacitance may

be written as

c(c) =C, +6C0 (1)

where ~ is the relative permittivity of the sample occupying

the space outside the line (Fig. 1).

This is the form of C(6) used by a large number of

investigators [1], The constant term Cf may be considered

to represent storage of energy in the fringing fields inside

the line while the linear term CCOrepresents energy storage

in the dielectric.

For the case where the sample dielectric is air (c = 1), the

net fringing capacitance is equal to the algebraic sum of Cf

and CO

C(l)=cf +CO=CT (2)

where the value of C(l) is designated the total capacitance

CT. This quantity is readily measured, or, for the homoge-

neous case (i.e., for an air line), it may be calculated from a

formula given in [8].

Numerical methods are used to calculate values of the

net fringing capacitance C(c) for each assumed value of c.

From this data, values of Cf and CO can be calculated for

each c by solving the simultaneous linear equations (1) and

(2). In general, both Cf and COwill be functions of c if C(c)

varies nonlinearly with c; however, if a range of e exists

where Cf and CO, calculated in the above manner, are

constant, the linear model will be approximately valid over

this range.
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B. Numerical Methods

1) Finite Element Method: The two-dimensional FEM

was used to solve Laplace’s equation indirectly in the

rotationally symmetric region of Fig. 2, representing the

open end of a coaxial line. The region which is partially

bounded by Dirichlet and homogeneous Neumann

boundaries was divided into triangular elements. In each

element, the permittivity .st is known and the unknown

potential I#Jis approximated by a polynomial trial function

with constant coefficients. The trial functions were sub-

stituted into the variational expression

J
F= c(V+)2dR (3)

R

(4)

which is proportional to the stored energy in the system,

and (4) was minimized with respect to the unknown con-

stant coefficients. This procedure produced a system of

algebraic equations for the unknown coefficients which can

be solved by standard methods.

It can be shown that the continuity of the normal flux

between adjacent dielectric regions (interface conditions)

are satisfied as a result of minimizing the variational ex-

pression [4], [10].

Since the problem is unbounded in the positive z-direc-

tion, an approximate Neumann boundary representing

fringing electric field line is used to close the region of

solution. The position of the approximate boundary is first

assumed and later, as solutions are run, it is further re-

fined. The criterion used for determining a sufficient size

for the half-space region in Fig. 2 was the convergence of

the total stored energy.

2) Method of Moments: The MOM was used to solve for

the unknown charge distribution on the conductor and

dielectric interface surfaces shown in Fig. 2. The coupled

integral equations which relate the free and bound surf ace

charge densities u(s) residing on conductors and dielectric
interfaces, respectively, to the potential distribution O(S)

are given by [11]

~ o(s’)G(sIs’)ds’= @(s), son& (5)
SC+S1

+W+(% –62)JU(s’)g(sls’)ds’=o,
SC

s on S1 (6)

where G (s Is’) is the free-space potential Green’s function

and SC and SI denote conductor and interface surfaces,

respectively.

The two permittivities c1 and 62 correspond to the two

dielectric regions and the normal n is directed from region

1 to region 2 as in Fig. 3.

In rotationally symmetric systems, the free-space Green’s

function and its normal derivative may be written in terms

of the complete elliptic integral of the first kind and its

derivative [12].

z

Fig. 2. Open-ended coaxiaf line with groundplane showing triangulari-
zation of region for solution by FEM.
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Fig. 3. Generalized configuration of an unbounded conductor-dielectric

problem

The solution of (5) and (6) for the unknown surface

charge distribution U(S) with a known potential distribu-

tion O(S) proceeds by dividing the surface into subsections

and assuming a uniform charge density of unknown ampli-

tude on each subsection. Next, the discretized integral

equations are enforced at the midpoint of each subsection,

producing a system of algebraic equations for the unknown

charge-pulse amplitudes. This is equivalent to using pulse

expansion and Dirac weighting functions in the MOM [13].

In order to approximate an infinite line in the negative

z-direction (see Fig. 2), the method of images was used to

solve for the charge on the real conductors and interfaces

and their mirror image about z = O. This insures an almost

uniform charge distribution inside the line far from the

aperture. Numerically, this involved adding a term to the

Green’s function to account for the presence of image

charges; however, it does not affect the number of un-

knowns to be solved.

For both the MOM and the FEM, the resulting capaci-

tance possesses a component due to the TEM capacitance

of an infinitely long line. The TEM capacitance, given by

2mb.,Al
c

‘EM = ln(b/a)
(7)

where Al is the length of line, must be subtracted from the

result in order to yield the net fringing capacitance.

III. NUMERICAL RESULTS

For comparison with the analytical expression for the

total fringing capacitance found in [8], the configuration of

a 50-fl air line opening into a groundplane and air-dielec-
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TABLE I
COMPARISONOFTOTAL CAPACITANCEOBTAINED FROMFEM AND MOM

Ref. [91 FEM MOM Measured [ 41

CT 4.295 4.311 4.076 3.92

co (b-a)

tric was solved using both methods. The ratio of outer- to

inner-conductor radii for this type of line is b/a = 2.3 and

the groundplane radius was taken to be 3 times the outer-

conductor radius. Using the FEM, the region of solution

shown in Fig. 2 was divided into 125 triangular elements

with 80 nodes. The necessary area of the half-space re-

quired to contain most of the stored energy was found to

have a radius of approximately 2.5 times the outer-conduc-

tor radius. This area was determined by progressively

increasing the radius of the quadrant until the change in

stored energy became less than 1 percent.

In the MOM solution, the conductors were divided into

65 subsections. 16-point Legendre–Gauss quadrature was

used to integrate the Green’s function for calculation of the

matrix elements except the diagonal ones which were

calculated using a combination of analytic and numerical

integration [15].

Both programs were written in double-precision Fortran,

and Gauss-elimination [17] was used for the solution of the

resulting system of equations. Table I compares the values

of fringing capacitance from both methods with the value

computed from the low-frequency asymptotic formula in

Marcuvitz [8].

The values of capacitance given in Table I and elsewhere

are normalized to the free-space permittivity c~ and aper-

ture dimension (b - a). Thus the results in Table I are

unitless quantities and pertain to any size of open-ended

50-fl air line.

Calculations of the fringing capacitance of 50-fl teflon

dielectric lines (identical to Fig, 1) were performed for a

range of half-space permittivities 1< c <60. These lines are

available commercially in sizes ranging from 0,5 mm (0.02”)

to 6 mm (0.25”) in diameter. The ratio of outer-conductor

inner-radius to inner-conductor radius is b/a = 3.27 and

outer-conductor outer-radius to inner-conductor radius is

c/a = 3.95, while the line dielectric constant is cke = 2.05.

For the FEM, 156 triangles and 96 nodes were used,

while in tlie MOM the conductors and interface were

divided into 66 and 12 subsections, respectively. Values for
the normalized fringing capacitance C(c)/cO(b – a) as a-

function of c are presented in Table II, while values of the

two linear model parameters Cf /Co(b – a) ad CO /~o(b –

a) are shown plotted versus c in Fig. 4. For comparison,

measured values are also indicated where applicable.

IV. DISCUSSION

From the results in Table I corresponding to an open-

ended air line with a groundplane, the two numerical

methods gave values of normalized fringing capacitance

within 5 percent of the value computed from the formula

in [8] with the FEM giving the closest value. On the other

OL (
102030405060

(

Fig. 4. Normalized Cf snd Co versus c for 50-t2 teflon dielectric lines.

TABLE II

NORMALIZED FRINGING CAPACITANCE VERSUS c (FEM AND

MOW

c(c)/c (b-a)

E FEM MOM Measured

1.0 2.4s 2.38 2.42

2.0 4.s3 4.56 ----

5.0 11.67 10.72 ----

10.0 22.88 20.62 ----

20.0 45.15 40.11 ----

40.0 89.60 7s.85 ----

60.0 134.02 117.53 ----

hand, the MOM result is closer to the measured value

reported for a 14-mm air line [4].

For the case of an open-ended teflon-filled line, the

MOM gave consistently smaller values of fringing capaci-

tance over the whole range of ~ (Table II). When the two
p~ameters of the linear model Cf and Co are calculated

according to Section II-A using the data in Table II, it is

seen that both parameters vary with c, especially for small

c. Also, as a result of the way in which they were defined

and the consistently larger values of C(~) produced by the

FEM, it may be seen (Fig. 4.) that the FEM gives larger

values of Co and smaller values of Cf than the MOM over

the range of, c. In Fig. 4, the values of Cf ~d COcomputed

from the MOM data for c = 2 are closer to the measured

values reported in [20] than for the FEM.

In view of the close correspondence between the MOM

results and measured values, it is felt that the results

obtained from the MOM are more accurate than the FEM.

Although no quantitative analyses of the errors in both

methods were performed, several observations during the

course of the work corroborate this conclusion. It was
found that the FEM converged rather slowly as the num-

ber of elements increased, whereas the MOM converged

quickly with an increasing number of subsections. Also, the

error introduced by truncating the region of solution in

the FEM may lead to a cancellation of errors since, for the

functional used in this work, the FEM should give an

upper bound for the capacitance.
In terms of the linear model for the fringing capacitance

as a function of the permittivity, it may be seen from Fig. 4

that the use of such a model is a good approximation for

large permittivities since Cf and CO are relatively constant

in this range. For small permittivities, say t <10, the linear
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model is not such a good approximation since Cf and CO

vary with e, although the percentage variation in Co is

relatively small. This fact together with the fact that Cf is

small compared to Co enables the. kear model to be uwid

for all practical purposes for small values of permittivity.

V. CONCLUSION

The numerical analysis of the static fringing capacitance

of an open-ended coaxial line in contact with a dielectric

has, been presented. This structure finds practical applica-

tions as a sensor for in vivo permittivity measurements at

radio and microwave frequencies. .The numerical, values of

the fringing capacitance, obt&ed from an application of

the FEM and the MOM, were used to examine the validity

of the two-capacitance or linear model relating the sample

perrnittivity to the fringing capacitance. The results showed
the linear model to be a good approximation for large

permittivities such as those encountered in biological

materials. The two methods also agreed titl-i measured

values of fringing capacitance reported in tie literature.

For smaller permittivities (i.e., c < 10), a more accurate

model is required as evidenced by the variation of the

iinear model parameters with e over this range.
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