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Numerical Analysis of Open-Ended Coaxial
Lines "
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Abstract —Numerical methods are applied in the ‘analysis of coaxial
structures used as sensors for in vivo permittivity. studies of biological
substances.” The methods used for the solution of the resulting static
conductor-dielectric problems are the Finite Element Method (FEM) and
the Method of Moments (MOM) applied to a pair of coupled integral
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equations. A linear model which relates the sample permittivity to the
fringing field capacitance of the sensor is discussed and values of the model
parameters are calculated for different types of sensors.

I. INTRODUCTION

PEN-ENDED coaxial lines have been used exten-
sively as sensors for. permittivity measurements of
biological substances in recent years {1]. Their simple
geometry and small size (potentially as small as 0.5-mm
diameter) makes them suitable for in vivo measurements as
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Fig. 1. Open-ended coaxial sensor for dielectric measurement.

well as measurement of the spatial distribution of permit-
tivity. Other advantages of the open-ended coaxial line
over other sensor configurations are: a broad frequency
range; compatibility with time-domain, applicability to
frequency-domain, and resonant measurement techniques;
and ease of fabrication.

When used as a sensor for dielectric measurement, the
open end of the line is inserted into the sample (as in Fig.
1), and the input reflection coefficient (or input admit- .
tance) is measured at a specific frequency and temperature.
Various methods have been used to relate the reflection
coefficient data to the dielectric properties of the sample.
These range from  analytical /graphical methods [2}, to
equivalent circuit approaches and interpolation methods
[3].

A solution of the scattering from the open end of a
coaxial line in contact with a lossy dielectric was presented
by Mosig ef al. [2]. Nomograms of reflection coefficient
versus relative permittivity of the half-space medium were
constructed, from which ¢ and ¢” could be calculated for a
given reflection coefficient. A major limitation of this
approach is that extensive nomograms are required at each
measurement frequency. Also, the numerical computations
required to generate the nomograms become increasingly
time consuming for high permittivities such as those en-
countered in biological substances at low frequencies [2].

Several authors have made use of a lumped equivalent
circuit, relating the admittance of the sensor to the permit-
tivity. This approach has the advantage that closed-form
expressions for €/ and €” as a function of the reflection
coefficient can be derived and used in automatic network
analyzer routines. Burdette er al. [3] used an equivalent
circuit consisting of a single lumped-shunt-capacitance
whose effective value was equal to the fringing capacitance
of the open-ended line in air multiplied by the sample
permittivity. An additional shunt capacitance whose value
is independent of the sample permittivity was added in [4]
to account for fringing inside the coaxial line. Also, the
effect of radiation from the open end on the equivalent
circuit was treated by Stuchly er al. [5] and used in mea-
surements by Brady er al. [6]. In all of the references
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pertaining to the lumped circuit approach, the equivalent
circuit parameters of the sensors were either measured
directly or inferred from measurements on known dielec-
trics. ‘Also, the assumption was made that the fringing
capacitances are linearly proportional to the permittivity
and independent of frequency.

The purpose of this work is to use numerical methods to
investigate the behavior of the fringing capacitance of
coaxial sensors, shown in Fig. 1, as a function .of the
sample permittivity. In particular, the two-capacitance or
linear model; relating the net fringing capacitance to the

- permittivity, is examined.

Since it is known [7}-[9] that the fringing capacitance for
the homogeneous case is constant from dc to microwave
frequencies (for all practical sizes of line), only the static
fringing capacitances are calculated in the present work.
The two numerical methods selected to solve the resulting
static conductor—dielectric problems are the Finite Ele-
ment Method (FEM) and the Method of Moments (MOM)
applied to a pair of coupled integral equations. Since all
solutions are for the static case, only lossless dielectric are
modelled.

II. THEORY

A. Capacitance Model

For the purposes of presentation of the numerical re-
sults, a linear model relating the net fringing capacitance to
the permittivity e is assumed. The fringing capacitance may
be written as ‘ \

Ce)=C +eG (D
where ¢ is the relative permittivity of the sample occupying
the space outside the line (Fig. 1).

This is the form of C(e) used by a large number of
investigators [1]. The constant term C, may be considered
to represent storage of energy in the fringing fields inside
the line while the linear term €C, represents energy storage
in the dielectric. ,

For the case where the sample dielectric is air (¢ =1), the
net fringing capacitance is equal to the algebraic sum of C;
and G

C()=CG+C=Cr (2)
where the value of C(1) is designated the total capacitance
C,. This quantity is readily measured, or, for the homoge-
neous case (i.e., for an air line), it may be calculated from a
formula given in [8].

Numerical methods are used to calculate values of the
net fringing capacitance C(e) for each assumed value of €.
From this data, values of C; and C, can be calculated for
each € by solving the simultaneous linear equations (1) and
(2). In general, both C;and C; will be functions of € if C(¢)
varies nonlinearly with €; however, if a range of € exists
where C; and C,, calculated in the above manner, are
constant, the linear model will be approximately valid over
this range. -
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B. Numerical Methods

1) Finite Element Method: The two-dimensional FEM
was used to solve Laplace’s equation indirectly in the
rotationally symmetric region of Fig. 2, representing the
open end of a coaxial line. The region which is partially
bounded by Dirichlet and homogeneous Neumann
boundaries was divided into triangular elements. In each
element, the permittivity €, is known and the unknown
potential ¢ is approximated by a polynomial trial function
with constant coefficients. The trial functions were sub-
stituted into the variational expression

F=fRe(v¢)2dR

No. T.

= L «f (vo)iar 4)

which 1s proportional to the stored energy in the system,
and (4) was minimized with respect to the unknown con-
stant coefficients. This procedure produced a system of
algebraic equations for the unknown coefficients which can
be solved by standard methods.

It can be shown that the continuity of the normal flux
between adjacent dielectric regions (interface conditions)
are satisfied as a result of minimizing the variational ex-
pression [4], [10].

Since the problem is unbounded in the positive z-direc-
tion, an approximate Neumann boundary representing
fringing electric field line is used to close the region of
solution. The position of the approximate boundary is first
assumed and later, as solutions are run, it is further re-
fined. The criterion used for determining a sufficient size
for the half-space region in Fig. 2 was the convergence of
the total stored energy.

3)

2) Method of Moments: The MOM was used to solve for
the unknown charge distribution on the conductor and
dielectric interface surfaces shown in Fig. 2. The coupled
integral equations which relate the free and bound surface
charge densities o(s) residing on conductors and dielectric
interfaces, respectively, to the potential distribution ¢(s)
are given by [11]

/S Sa(s’)G(s]s') ds'=¢(s), sonS, (5)
+
S5 2000+ (=) [ o) o () o' =0,
sonsS, (6)

where G(s|s’) is the free-space potential Green’s function
and S, and S; denote conductor and interface surfaces,
respectively.

The two permittivities €; and €, correspond to the two
dielectric regions and the normal 7 is directed from region
1 to region 2 as in Fig,. 3.

In rotationally symmetric systems, the free-space Green’s
function and its normal derivative may be written in terms
of the complete elliptic integral of the first kind and its
derivative [12].
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Fig. 2. Open-ended coaxial line with groundplane showing triangulari-
zation of region for solution by FEM.
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Fig. 3. Generalized configuration of an unbounded conductor-dielectric

problem

The solution of (5) and (6) for the unknown surface
charge distribution o(s) with a known potential distribu-
tion ¢(s) proceeds by dividing the surface into subsections
and assuming a uniform charge density of unknown ampli-
tude on each subsection. Next, the discretized integral
equations are enforced at the midpoint of each subsection,
producing a system of algebraic equations for the unknown
charge-pulse amplitudes. This is equivalent to using puise
expansion and Dirac weighting functions in the MOM [13].

In order to approximate an infinite line in the negative
z-direction (see Fig. 2), the method of images was used to
solve for the charge on the real conductors and interfaces
and their mirror image about z = 0. This insures an almost
uniform charge distribution inside the line far from the
aperture. Numerically, this involved adding a term to the
Green’s function to account for the presence of image
charges; however, it does not affect the number of un-
knowns to be solved.

For both the MOM and the FEM, the resulting capaci-
tance possesses a component due to the TEM capacitance
of an infinitely long line. The TEM capacitance, given by

27y, Al
CTEM - ln(b/a) (7)

where A/ is the length of line, must be subtracted from the
result in order to yield the net fringing capacitance.

IIIL.

For comparison with the analytical expression for the
total fringing capacitance found in [8], the configuration of
a 50-Q air line opening into a groundplane and air-dielec-

NUMERICAL RESULTS
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TABLE I
CoMPARISON OF TOTAL CAPACITANCE OBTAINED FROM FEM AND MOM

Ref. [9] FEM MOM Measured [4]

C
— T | 4.295
eo(b-a)

4.311 4.076 3.92

tric was solved using both methods. The ratio of outer- to
inner-conductor radii for this type of line is b/a = 2.3 and
the groundplane radius was taken to be 3 times the outer-
conductor radius. Using the FEM, the region of solution
shown in Fig. 2 was divided into 125 triangular elements
with 80 nodes. The necessary area of the half-space re-
quired to contain most of the stored energy was found to
have a radius of approximately 2.5 times the outer-conduc-
tor radius. This area was determined by progressively
increasing the radius of the quadrant until the change in
stored energy became less than 1 percent.

In the MOM solution, the conductors were divided into
65 subsections. 16-point Legendre-Gauss quadrature was
used to integrate the Green’s function for calculation of the
matrix elements except the diagonal ones which were
calculated using a combination of analytic and numerical
integration [15].

Both programs were written in double-precision Fortran,
and Gauss-elimination [17] was used for the solution of the
resulting system of equations. Table I compares the values
of fringing capacitance from both methods with the value
computed from the low-frequency asymptotic formula in
Marcuvitz [8].

The values of capacitance given in Table I and elsewhere
are normalized to the free-space permittivity ¢, and aper-
ture dimension (b~ a). Thus the results in Table I are
unitless quantities and pertain to any size of open-ended
50-8 air line.

Calculations of the fringing capacitance of 50-Q teflon
dielectric lines (identical to Fig. 1) were performed for a
range of half-space permittivities 1 < € < 60. These lines are
available commercially in sizes ranging from 0.5 mm (0.02")
to 6 mm (0.25”) in diameter. The ratio of outer-conductor
inner-radius to inner-conductor radius is b/a = 3.27 and
outer-conductor outer-radius to inner-conductor radius is
¢/a=13.95, while the line dielectric constant is €, = 2.05.

For the FEM, 156 triangles and 96 nodes were used,
while in the MOM the conductors and interface were
divided into 66 and 12 subsections, respectively. Values for
the normalized fringing capacitance C(¢)/€y(b—a) as a-
function of e are presented in Table II, while values of the
two linear model parameters C; /€,(b — a) and C; /¢,(b—
a) are shown plotted versus € in Fig. 4. For comparison,
measured values are also indicated where applicable.

IV. DiscussioNn

From the results in Table I corresponding to an open-
ended air line with a groundplane, the two numerical
methods gave values of normalized fringing capacitance
within 5 percent of the value computed from the formula
in [8] with the FEM giving the closest value. On the other

383
24
© 231 Gy (FEM)
ola 22
©
g o 2a
3 20 Co ( MOM)
8 9 EXPERMENTAL (20)
© 0 T T T T T T T
K 0s
= - EXPERIMENTAL (20) Cy (MOM)
2 04 o
E -
= [}
2 RS A 03 ¢, (FEM)
Sod /" -
w
ol

Fig. 4. Normalized Crand C, versus e for 50-8 teflon dielectric lines.

TABLE 11
NORMALIZED FRINGING CAPACITANCE VERSUS € (FEM AND
MOM)
C(e) /e, (b-a)

[3 FEM MOM Measured
1.0 2.48 2.38 2.42
2.0 4.83 4.56 ———
5.0 11.67 10.72 -

10.0 22.88 20.62 —
20.0 45.15 40.11 —
40.0 89.60 78.85 J——
60.0 134.02 117.53 e

hand, the MOM result is closer to the measured value
reported for a 14-mm air line [4].

For the case of an open-ended teflon-filled line, the
MOM gave consistently smaller values of fringing capaci-
tance over the whole range of e (Table II). When the two
parameters of the linear model C; and C, are calculated
according to Section II-A using the data in Table II, it is
seen that both parameters vary with e, especially for small
¢. Also, as a result of the way in which they were defined
and the consistently larger values of C(e) produced by the
FEM, it may be seen (Fig. 4.) that the FEM gives larger
values of C, and smaller values of C; than the MOM over
the range of ¢. In Fig. 4, the values of C, and C,; computed
from the MOM data for e =2 are closer to the measured
values reported in [20] than for the FEM.

In view of the close correspondence between the MOM
results and measured values, it is felt that the results
obtained from the MOM are more accurate than the FEM.
Although no quantitative analyses of the errors in both
methods were performed, several observations during the
course of the work corroborate this conclusion. It was
found that the FEM converged rather slowly as the num-
ber of elements increased, whereas the MOM converged
quickly with an increasing number of subsections. Also, the
error introduced by truncating the region of solution in
the FEM may lead to a cancellation of errors since, for the
functional used in this work, the FEM should give an
upper bound for the capacitance.

In terms of the linear model for the fringing capacitance
as a function of the permittivity, it may be seen from Fig. 4
that the use of such a model is a good approximation for
large permittivities since C; and G, are relatively constant
in this range. For small permittivities, say € < 10, the linear
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model is not such a good approx1mat10n since C; and CO
vary with e, although the percentage variation 1n G is
relatively small. This fact together with the fact that G is
small compared to C, enables the linear model to be used
for all practical purposes for small values of permittivity.
V. CONCLUSION

The numerical analysis of the static frlngmg capacitance
of an open-ended coaxial line in contact with a dielectric
has been presented. This structure finds practical apphca-
tions as a sensor for in vivo permittivity measurements at
radio and microwave frequencies. The numerical. values of
the fringing capacitance, obtained from an application of
the FEM and the MOM, were used to examine the validity
of the two-capacuance or linear model relating the sample
permittivity to the fringing capacitance. The results showed
the linear model to be a good approximation for large
permittivities such as those encountered in biological
materials. The two methods also agreed with measured
values of fringing capacitance reported in the literature.

For smaller perrmtt1v1t1es (i.e., € <10), a more accurate
model is required as ev1denced by the variation of the
linear model parameters with € over this range.
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